Arp, A.J., Childress, J.J. and Fisher, C.R. (1985). Blood gas transport in Riftia pachyptila. Bull. Biol. Soc. Wash., 6: 289-300

Belkin, S., Nelson, D.C. and Jannasch, H.W. (1986). Symbiotic assimilation of CO2 in two hydrothermal vent animals, the mussel Bathymodiolus themophilus and the tube worm Riftia pachyptila. Biol. Bull., 170: 110-121.

Bright, M., Lallier, F.H. (2010). The biology of Vestimentiferan tubeworms. Oceanogr. Mar. Biol.48: 213-266.

Cary, S.C., Felbeck, H. and Holland, N.D. (1989). Observations on the reproductive biology of the hydrothermal vent tubeworm Riftia pachyptila. Mar. Ecol. Prog. Ser., 52: 89-94.

Cavanaugh, C.M., Gardiner, S.L., Jones, M.L., Jannasch, H.W. and Waterbury, J.B. (1981). Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, 213: 340-341.

Childress, J.J. and Fisher, C.R. (1992). The biology of hydrothermal vent animals: Physiology, biochemistry and autotrophic symbioses. Oceanogr. Mar. Biol. Ann. Rev.30: 337-441.

Childress, J.J., Fisher, C.R., Favuzzi, J.A., Kochevar, R.E., Sanders, N.K. and Alayse, A.M. (1991). Sulfide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones. Biol. Bull.180: 135-153.

Childress, J.J., Lee, R.W., Sanders, N.K., Felbeck, H., Oros, D.R., Toulmond, A., Desbruyeres, D., Kennicutt II, M.C. and Brooks, J. (1993). Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental PCO2. Nature, 362: 147-149.

Cole, J.A. and Ferguson, S.J. (1988). The nitrogen and sulphur cycles. Cambridge University Press. 490pp.

Corliss, J.B., Dymond, J., Gordon, L.L., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K. and van Andel, T.J. (1979). Submarine thermal springs on the Galápagos rift. Science, 203: 1073-1083.

Cossins, A.R., and Bowler, K. (1990). Temperature biology of animals. Cryobiol.27: 98-99.

Cosson, R.P. and Vivier, J.P. (1997). Interaction of metallic elements and organisms within hydrothermal vents. Cah. Biol. Mar.38: 43-50.

Coykendall, D.K., Johnson, S.B., Karl, S.A., Lutz, R.A. and Vrijenhoek, R.C. (2011). Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents. BMC Evol. Biol.11: 1-12.

De Cian, M., Regnault, M. and Lallier, F.H. (2000). Nitrogen metabolites and related enzymatic activities in the body fluids and tissues of the hydrothermal vent tubeworm Riftia pachyptila. J. Exp. Biol., 203: 2907-2920.

Dworkin, M., Falkow, S. and Rosenberg, E. (2006). The prokaryotes: vol. 1: symbiotic associations, biotechnology, applied microbiology. Springer. 134pp.

Gage, J.D. and Tyler, P.A. (1991). Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press. 504pp.

Girguis, P.R., Lee, R.W., Desaulniers, N., Chicldress, J.J., Pospesel, M., Felbeck, H. and Zal, F. (2000). Fate of nitrate acquired by the tubeworm Riftia pachyptila. Appl. Environ. Microbiol., 66(7): 2783-2790.

Goffredi, S.K., Childress, J.J., Desaulniers, N.T., Lee, R.W., Lallier, F.H. and Hammond, D. (1997). Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external PCO2 and upon proton-equivalent ion transport by the worm. J. Exp. Biol.200: 883-896.

Grassle, J.F. (1985). Hydrothermal vent animals: distribution and biology. Oceanus, 27: 63-66.

Hannington, M.D., Jonasson, I.R., Herzig, P.M. and Petersen, S. (1995). Physical and chemical processes of seafloor mineralization at mid-ocean ridges. In Seafloor hydrothermal systems: physical, chemical, biological and geological interactions. (ed. Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S. and Thomson, R.E.). American Geophysical Union. pp115-157.

Hessler, R.R., Smithey, W.M. and and Keller, C.H. (1988). Temporal change in megafauna at the Rose Garden hydrothermal vent (Galápagos rift: eastern tropical Pacific). Deep-Sea Res.35: 1681-1709.

Johnson, K.S., Childress, J.J., Hessler, R.R., Sakamoto-Arnold, C.M. and Beehler, C.L. (1988). Chemical and biological interactions in the Rose Garden [eastern Pacific Ocean] hydrothermal vent field, Galápagos spreading center. Deep-Sea Res.35: 1723-1744.

Jones, M.L. (1981). Riftia pachyptila Jones: Observations on the vestimentiferan worms from the Galapagos Rift. Science, 213: 333-336.

Kochevar, R.E. and Childress, J.J. (1996). Carbonic anhydrase in deep-sea chemo-autotrophic symbioses. Mar. Biol.125: 375-383.

Kojima, S., Hashimoto, T., Hasegawa, M., Murata, S., Ohta, S., Seki, H. and Okada, N. (1993) Close phylogenetic relationship between Vestimentifera (tubeworms) and Annelida revealed by the amino acid sequence of elongation factor-1a. J. Molec. Evolut., 37: 66-70.

Lilley, M.D., Butterfield, D.A., Olson, E.J., Lupton, J.E., Macko, S.A. and McDuff, R.E. (1993). Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature, 364: 45-47.

Lonsdale, P. (1977). Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centres. Deep-Sea Res., 24: 857-863.

Marsh, A.G., Mullineaux, L.S., Young, C.M. and Manahan, D.T. (2001). Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature, 411: 77-80.

McEdward, L. (1995). Ecology of marine invertebrate larvae. CRC Press. 464pp.

Mullineaux, L.S., Fisher, C.R., Peterson, C.H. and Schaeffer, S.W. (2000). Tubeworm succession at hydro-thermal vents: use of biogenic cues to reduce habitat selection error. Oecologia, 123: 275-284.

Reysenbach, A.L., Liu, Y., Banta, A.B., Beveridge, T.J., Kirshtein, J.D., Schouten, S., Tivey, M.K., Vom Domm., K.L. and Voytek, M.A. (2006). A ubiquitous thermoacidiophilic archaeon from deep-sea hydrothermal vents. Nature, 442: 444-447.

Rouse, G.W. (2001). A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida: formerly the phyla Pognophora and Vestimentifera. Zool. J. Linn.Soc.132: 55-80.

Sanders, N.K. and Childress, J.J. (1993). Plume surface area and blood volume in the hydrothermal vent worm Riftia pachyptila. Am. Zool. 33: 95A.

Somero, G.N., Childres, J.J. and Anderson, A.E. (1989). Transport, metabolism and detoxification of hydrogen sulphide in animals from sulphide-rich marine environments. Crit. Rev. Aquatic Sci., 1: 591-614.

Van Dover, C.L. (1994). In situ spawning of hydrothermal vent tubeworms (Riftia pachyptila). Biol. Bull., 186: 134-135.

Van Dover, C.L. (2000). The ecology of deep-sea hydrothermal vents. Princeton University Press. 424pp.

Wittenberg, J.B., Morris, R.J., Gibson, Q.H. and Jones, M.L. (1981). Hemoglobin kinetics of the Galapagos Rift vent worm Riftia pachyptila Jones (Pognophora: Vestimentifera). Science, 213: 344-364.

Leave a Reply